Candidate's Name :	The state of the s	
Enrolment No. :	Signature of Invigilator:	
	All vigilator.	506274

JEM-2008

596374

(Do not open this MCQ BOOKLET until you are asked to do so)

Subject: PHYSICS AND CHEMISTRY

Maximum Marks: 80 (Each question carries equal mark.)

IMPORTANT INSTRUCTIONS

Candidates should read the following instructions carefully and fill in all the required particulars before answering the questions:

- (1) The Question Booklet with 16 pages has been sealed. Candidates should open the Question Booklet only when they are asked to do so by the Invigilator.
- (2) The candidates must check that the Question Booklet has 80 questions with multiple choice answers immediately after opening the seal. Each MCQ carries *one* mark.
- (3) Answers will have to be given on the OMR Answer Sheet supplied for this purpose. Question numbers progress from 1 to 80 with options shown as (A), (B), (C) and (D).
- (4) OMR Answer Sheets will be processed by electronic means. Hence, invalidation of Answer Sheet resulting due to folding or putting stray marks on it or any damage to the Answer Sheet as well as incomplete/incorrect filling of the Answer Sheet, will be the sole responsibility of the Candidate.
- (5) Use Black Ball Pen to mark your answers.
- (6) While answering, choose only the Correct/Best option from the four choices given in the question and mark the same in the corresponding circle in the Answer Sheet only. Answers without any response shall be awarded zero mark. Wrong response or more than one response shall be treated as incorrect answer. For every incorrect answer one-third (1/3) mark of that Question will be deducted.
- (7) Darken with Black Ball Pen completely only one option which you think correct as shown in the figure below:

CORRECT METHOD	WRONG METHOL
•000	

- (8) Mark the answers only in the space provided. Please do not make any stray marks on the Answer Sheet.
- (9) Rough work may be done on the space provided in the Question Booklet.
- (10) Please hand over the OMR Answer Sheet to the Invigilator before leaving the Examination Hall.

PHYSICS

A beaker of radius 15 cm is filled with a liquid of surface tension 0.075 N/m. Force across an imaginary diameter on the surface of the liquid is

(A) 0.075 N

(B) $1.5 \times 10^{-2} \text{ N}$

(C) .225 N

(D) 2.25×10^{-2} N

Two springs are joined & attached to a mass of 16 kg. The system is then suspended vertically from a rigid support. The spring constants of the two springs are - K₁ & K₂ respectively. The period of vertical oscillations of the system will be -

3. The equation of a progressive wave can be given by

 $Y = 15 \sin (660 \pi t - 0.02 \pi x)$ cm. The frequency of the wave is

(A) 330 Hz

(B) 342 Hz

(C) 365 Hz

(D) 660 Hz

4. A hollow cylinder with both side open generates a frequency 'f in air. When the cylinder vertically immersed into water by half its length the frequency will be

(A) 'f'

5. Two stretched strings has lengths 'l' and '2l' while tensions are 'T' and '4T' respectively. If they are made of same material the ratio of their frequency is

(A) 2:1

(B) 1:2 (C) 1:1

(D) 1:4

6. When sound is produced in an Aeroplane moving with a velocity of 200 m/sec horizontally its echo is heard after $10\sqrt{5}$ seconds. If velocity of sound in air is 300 m/sec the elevation of the aircraft is

(A) 250 m

(B) $250 \sqrt{5} \text{ m}$

(C) 1250 m

(D) 2500 m

Two tuning forks of frequencies n₁ and n₂ produces n beats per second. If n₂ and n are known, n₁ may be given by

(A) $\frac{n_2}{n} + n_2$

(C) $n_2 \pm n$

8. A car moving with a velocity of 36 km/hr crosses a siren of frequency 500 Hz. The apparent frequency of the siren after passing it will be

(A) 520 Hz

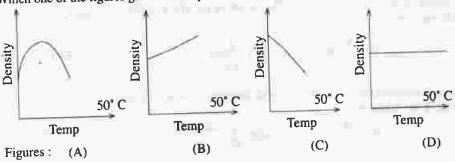
(B) 485 Hz

(C) 540 Hz

(D) 460 Hz

9. Six molecules have speeds 2 units, 5 units, 3 units, 6 units, 3 units and 5 units respectively. The rms speed is—

(A) 4.0 units


(B) 1.7 units

(C) 4.2 units

1

(D) 5.0 units

Which one of the figures gives the temperature dependence of density of water correctly?

11,	accelaration, the approx	kima			the gun is fired is — (D) Is	
12.	A body of mass 3 kg ac	cted	upon by a constant	force is displaced by	y 's' meter, given by the relation	
	$s = \frac{1}{3}t^2$, where t is in se	cond	l. Work done by the	force in 2 seconds is	is	
	(A) $\frac{8}{3}$ J	(B)	$\frac{19}{5}$ J	(C) $\frac{5}{19}$ J	(D) $\frac{3}{8}$ J	
13.	The ionization potential a photon of energy 12.7 makes a downward trans	75 e	V. How many diffe	. An electron in the grent spectral lines ca	ground state of a H-atom absorbs an one expect when the electron	
	(A) 1	(B)	4	(C) 2	(D) 6	
14.	A piece of wood is float wood will (A) increase	ting i	in water. When the		r rises, the apparent weight of the	
	(C) may increase or dec	creas	e	(B) decrease (D) remain same		
15.	An experiment takes 10 minutes to convert it to out to be —	0 mi tally	nutes to raise temp into steam by a sta	perature of water from bilized heater. The la	om 0°C to 100°C and another 55 atent heat of vaporization comes	
			540 cal/gm	(C) 550 cal/gm	(D) 560 cal/gm	
16.	Which of the following (A) Steel		stances has the high Copper	est elasticity? (C) Rubber	(D) Sponge	
17.	A wire is stretched unde (A) remains the same (C) increases	(B)		•	perature of the wire	
18.			becomes equal to t Zero%	he dew-point, the rela (C) 70%	ative humidity of the room is (D) 85%	
19.	At what temperature with (A) 519°C		erms speed of air m 619°C	olecules be double th (C) 719°C	hat at NTP? (D) 819°C	
20.	The refractive indices of	of gla	ass and quartz with	respect to air are $\frac{3}{2}$ a	and $\frac{12}{5}$ respectively. The r.i. of	
	quartz w.r.t glass is					
	(A) $\frac{8}{5}$	(B)	<u>5</u> 8	(C) $\frac{5}{18}$	(D) $\frac{18}{5}$	
21.	The radius of curvature object distance is	of a	concave mirror is 2	4cm and the image is	s magnified by 1.5 times. The	
	(A) 20 cm	(B)	8 cm	(C) 16 cm	(D) 24 cm	
22.	A point source of light surface of water through	is ke h wh	pt at a depth of 'h' i ich light emits is	n water of r.i 4/3. The	ne radius of the circle at the	
	(A) $\frac{3}{\sqrt{7}}$ h	(B)	$\frac{\sqrt{7}}{3}h$	(C) $\frac{\sqrt{3}}{7}$ h	(D) $\frac{7}{\sqrt{3}}$ h	
23	Four point charges each that they form a square.	'+q' The	is placed on the circ potential at the cen	cumference of a circle	e of diameter 2d in such a way	

(A) 0

(D) $\frac{q}{4d}$

24.	64 ident	tical spheres of c	harge (q and capacitance	C each are combined	to fo	rm a large sphere. The
	(A) 64	and capacitance of		6q, 4C	(C) 64q, 4C	(D)	16q, 64C
25.	(A) the (B) the (C) the	e law of conservate law of con	ation o ation o ation o	of energy		1	
26.	(A) T		staten a stal	nents is correct? ble nucleus is les	s than the sum of	the re	est masses of its separated
	(B) T	•					est masses of its separated
	(C) In	nuclear fusion,					m mass (approximately 100
	(D) In	nuclear fission,			agmentation of a ver		
27,	(A) T (B) T (C) T (D) T	iat in germanium he reverse curre he reverse curre The reverse curre The relative magn	nt in g nt in s nt in s nts are nitude	dentical reverse for termanium is larger ilicon is larger that identical in the two of the reverse curr	r than that in silicon in that in germanium to diodes.	nined	from the given data only.
28.	(A) 4	Ω	(B)	2Ω	circle. The resistance (C) 1Ω	(D) 022
29.	A batt	tery of emf E and aximum power to	_				resistance 'R', the condition
	(A) t		(B)	r > R	(C) $r = \frac{1}{R}$	(D) r = R
30.	The b)111 is (B)	equivalent to the	decimal number (C) 23	(Ľ	o) 22
31,	The a	ingle subtended l	by the	vector $A = 4^{\circ} + 3$	$3^{\circ}_{1} + 12^{\circ}_{1}$ with the x	-axis	is my mutually a
	(A)	$Sin^{-1}\left(\frac{3}{13}\right)$	(B)	$\operatorname{Sin}^{-1}\left(\frac{4}{13}\right)$			
	(C)	$Cos^{-1}\left(\frac{4}{13}\right)$	(D)	$Cos^{-1}\left(\frac{3}{13}\right)$	_	2	The state of the state of
32	(A)	L	(B)	LT.	is given by $v = at +$ (C) LT^{-2}	(4	5) L1
33	initia	al velocity of the	objec	an object along a et is -3 unit	straight line in time (C) 4 unit		given by $S = 3 - 4t + 5t^2$, the D) -4 unit
	(A)	3 unit				1 rad	s along a circle of radius '1'
34	mete (A)	er, the centrifuga 0.1 dyne	l force (B)	is 1 dyne	(C) 10 dyne	(D) 100 dyne
3.5	5. Two	point objects o	f mass	1.5 gm and 2.5 g	m respectively are a	t a di	stance 16 cm apart, the centre
	of g	ravity is at a dist	tance	x' from the object	of mass 1.5 gm who (C) 13 cm	TO V	D) 3 cm

36.	original value then on (A) 96 hrs	uch that its made complete day (B) 48 hrs	will take.			
37:	A Shell of mass 10 I parts of mass 9 kg and (A) 1 m/s	d l kg respective	ely. If the 1st mass is:	stationary the velocity	y of the 2nd is n/s	
38.	Force required to move and $g = 9.8 \text{ m/s}^2$) is					
	(A) 0.98 N	(B) 0.49 N	(C) 9.8 N	(D) 4.9 N		
39.	A rocket of mass 100 then it lifts with an acc	kg burns 0.1 k	kg of fuel per second.	. If velocity of exhau	st gas is 1 Km/Sec	
	(A) 1000 m/s^2	(B) 100 m/s ²	(C) 10 m/s	$(D) 1 \text{ m/s}^2$		
40.	The weight of a body radius of the earth its	on the surface				
	(A) 2.8 N	(B) 5.6 N	(C) 12.6 N	(D) 25.2 N		
						20.00
					100	
			CHEMISTRY			
41.	2N HCl solution will b (A) 4.0 N H ₂ SO ₄		r concentration as a SO ₄ (C) 1.0 N F	H ₂ SO ₄ (D) 2.0 N F	-l₂SO₄	
42.	One mole of methylan (A) 1.0 litre of nitrog (C) 11.2 litres of nitrog	en	(B) 22.4 lit	res of nitrogen es of nitrogen		
43.	Addition of sodium acc (A) increase of pH (C) no change in pH	(B) decrease of	of pH			I Think
44.					O and a	6 " 5 "
	The electronic configu (A) Metal atom	ration 1s ² 2s ² 2 ₁ (B) Non meta		nts a etallic anion (D) Me	tallic cation	
45.	(A) Metal atom Unusually high boiling (A) Intermolecular hy (B) Both inter-and intercolor intercol	(B) Non meta g point of water drogen bonding ra-molecular hyd drogen bonding	is the result of		tallic cation	
45. 46.	(A) Metal atomUnusually high boiling(A) Intermolecular hy(B) Both inter-and int(C) Intramolecular hy	(B) Non meta g point of water drogen bonding ra-molecular hyd drogen bonding	is the result of	etallic anion (D) Me	tallic cation	
	(A) Metal atom Unusually high boiling (A) Intermolecular hy (B) Both inter-and int (C) Intramolecular hy (D) High specific head In the reaction $3A \rightarrow 2$ (A) $-\frac{1}{3} \frac{d(A)}{dt}$	(B) Non meta g point of water drogen bonding ra-molecular hyd drogen bonding	is the result of	etallic anion (D) Me	tallic cation	

			Kough work
47.	In a given shell, the order of screening effect is (A) $f > d > p > s$ (B) $s > p > d > f$ (C) $f > p > s > d$	(D) p < d < s < f	100 000
48.	A catalyst is a substance which (A) Increases the equilibrium constant of the reaction (B) Increases the equilibrium concentration of products		
	(C) Does not alter the reaction mechanism (D) Changes the activation energy of the reaction	Desired Transport	
			THE PERSON
49.		nip:	-
	(A) $p = \frac{h}{mv}$ (B) $\lambda = \frac{h}{mv}$ (C) $\lambda = \frac{h}{mp}$	(D) $Am = \frac{1}{p}$	
50.	The bond order in O ₂ ion is		
	(A) 2 (B) 1 (C) 2.5	(D) 1.5	
51.	4	ar domary (a) as	
	(A) $\frac{1}{\sqrt{d}}$ (B) d (C) \sqrt{d}	(D) d^2	
52.	solution of magnessium hydroxide will be		
	(A) 10.53 (B) 8.47 (C) 6.94	(D) 3.47	
53.	If the volume of the vessel in which the reaction, $2NO(g)+O_2(g)=$ to one third of its initial volume, the rate of the reaction will be i (A) 3 times (B) 9 times (C) 27 times	2NO ₂ (g) is occurring, is diminished ncreased by (here, g = gas) (D) 36 times	
54.	Without performing any calculation indicate the process from the entropy will be positive	following list for which change of	
	(A) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$	Interpretation of the	
	(4) 11-1(8) 1 1 1 1 1 1 1		
	(C) $NH_4NO_3(s) = N_2O(g) + 2H_2O(g)$		
	(D) $MgO(s) + H_2(g) = Mg(s) + H_2O(l)$ (s = solid, l = liquid, g = gas)		
	235 1 92 v	l	
55.	The product P of the nuclear reaction ${}^{235}_{92}U + {}^{1}_{0}n \longrightarrow P + {}^{92}_{36}Kr$ (A) ${}^{141}_{56}Sr$ (B) ${}^{141}_{56}La$ (C) ${}^{141}_{56}Ba$	(D) 56 Cs	
56	point of a 0.02 molal solution of urea is depressed by	al NaCl solution. The freezing	
	(A) 0.37°C (B) 0.74°C (C) 0.185°C	(D) 0°C	
57.			
	(A) $Me_2C = CHMe$ (B) $Me_2C = CMe_2$ (C) $MeCH_2-C(Me) = CMe_2$ (D) $MeCH(Me)$		
	Description of the self-relian medium is become as		
58.	Benzoylation of phenol in alkaline medium is known as (A) Friedel Craft reaction (B) Wurtz-Fitti	g reaction	

(D) Sabatier-Sandern's reaction

(C) Schotten-Baumann reaction

Space for Rough Work

- Which one of the following compounds is most reactive towards nucleophilic addition? CH₃CHO, PhCOCH₃,
 - (A)
- (B)
- PhCOPh, (C)
- CH3COCH3 (D)
- Distillation of acetone with concentrated H₂SO₄ gives
 - (A) diacetone alcohol (B) mesityl oxide
- (C) mesitylene
- (D) Propene-2-ol
- RCH₂CH₂OH can be converted into RCH₂CH₂COOH by the following sequence of steps: 61.
 - (A) PBr₃, KCN, H₃O⁺

(B) PBr₃, KCN, H₂/Pt

(C) KCN, H₃O+

- (D) HCN, PBr3, H3O+
- The major product 'P' in the following reaction is

$$CH_3CH = CH_2 \xrightarrow{HI} P$$

(A) CH₃ CH₂ CH₂ I

(B) CH₃ CH—CH₃

(C) CH_2 — $CH = CH_2$

- 63. Formation of cyanohydrin from a ketone is an example of
 - (A) Electrophilic addition

(B) Nucleophilic substitution

- (C) Nucleophilic addition
- (D) Electrophilic substitution
- 64. Which of the following will exhibit cis trans isomerism?
 - (A) CH_2Br — CH_2Br (B) CBr_3 — CH_3
- (C) CHBr = CHBr (D) $CBr_2 = CH_2$
- How many primary amines are possible with the formula C₄H₁₁N?
- (B) 2
- (C) 3

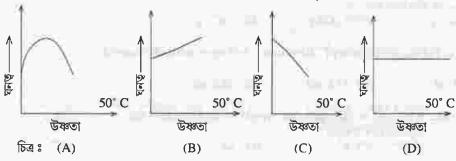
- The IUPAC name of CH_1 — $CH = CH_1$ $= CH_2$ $= CH_3$ is
 - (A) Pent -3 en 1 vne
- (B) Pent -3 en 4 yne
- (C) Pent -2 en 4 yne
- (D) Pent 2 en 3 vne
- A tripeptide is written as Glycine-Alanine-Glycine. The correct structure of the tripeptide is
- CH,
- Ö CH.
- CH,
- 68. Which of the following will produce only one product upon reduction with LiAlH₄?
 - (A) CH₃ OCOCH₂ CH₃

(B) CH₃ CH₂O COCH₂ CH₃

(C) CH₃CH₂OCOCH₃

(D) CH₃ CH₂O COCH₂ CH₂CH₃

69.	Which pair of the following gives effervescence	with aq. NaHCO ₃ ?	la contra	
	CH ₃ COCI, CH ₃ COCH ₃ , CH ₃ C	OOCH ₃ , CH ₃ COC	OCOCH ₃	
	П	Ш	V	
	(A) I and II (B) I and IV	(C) II and III	(D) I and III	
70.	Which of the following acids has the smallest d	lissociation constant?	The state of the s	
. •	(A) CH ₃ CHF. CO ₂ H	(B) FCH ₂ CH ₂ CO ₂		
	(C) BrCH ₂ CH ₂ CO ₂ H	(D) CH ₃ CHBr.CO ₂	₂ H	
71.	Which one of the following pairs is obtained or	n heating ammonium	dichromate?	
	(A) N ₂ and H ₂ O (B) N ₂ O and H ₂ O (C) NO ₂ and H ₂ O (D) NO and NO ₂			
	(C) NO ₂ and H ₂ O (D) NO and NO ₂			
72.	Which one of the following processes is used for	or the manufacture of	calcium?	
	(A) Reduction of CaO with carbon			
	(B) Reduction of CaO with hydrogen			
	(C) Electrolysis of a mixture of anhydrous Ca	Cl ₂ and KCl		
	(D) Electrolysis of molten Ca(OH) ₂			
73.	Composition of azurite mineral is			
75.	(A) CuCO ₃ .CuO	(B) Cu(HCO ₃) ₂ .Cu	1(OH) ₂	
	(C) 2CuCO ₃ .Cu(OH) ₂	(D) CuCO ₃ . 2Cu(C	· · · · · =	
	(5) 20003,02(013)2			
74.	When KI is added to an acidified solution of soo	dium nitrite		
	(A) NO gas is liberated and l ₂ is set free		ted and HI is produced	
	(C) N ₂ O gas is liberated and l ₂ is set free	(D) N ₂ gas is libera	ted and HOI is produced	
75	F-(OII) and be accounted from AI(OII) bushe	addition of		
75.	Fe(OH) ₃ can be separated from Al(OH) ₃ by the (A) NaCl solution	(B) dil. HCl solution	on.	
	(C) NaOH solution	(D) NH ₄ Cl and NH		
	(c) Naori solution	(2)401		
76.	Select the incorrect statement from the following	ng:		
	(A) Ozone is used as germicide for the purifica		100	
	(B) In ozone oxygen-oxygen bond length is id	lentical with that of n	nolecular oxygen	
	(C) Ozone molecule is angular in shape			
	(D) Ozone is an oxidising agent			
77 .	The brown complex obtained in the detection o	f nitrate radical is for	mulated as [Fe(H ₂ O) ₅ NO]SO ₄	
	What is the oxidation number of Fe in this con			
	(A) +1 (B) +2	(C) +3	(D) 0	
70	Sodium nitrate on reduction with Zn in present	of NoOU colution	produces ammonia Mass of	
78	sodium nitrate on reduction with Zn in present		produces animoma. Mass of	
	(A) 7.750 g (B) 10.625 g	(C) 8.000 g	(D) 9.875 g	
		Sec. 1	and the second second	
79 .	In transforming 0.01 mol of PbS to PbSO ₄ , the	volume of "10-volur	me" hydrogen peroxide required	
	will be	(O) 22 6l	(D) 44.9 ml	
	(A) 11.2 ml. (B) 22.4 ml.	(C) 33.6 ml.	(D) 44.8 ml.	
80.	An unknown element forms an oxide. What wi	ill be the equivalent v	weight of the element if the	
55.	oxygen content is 20% of the above compound			
	(A) 16 (B) 32	(C) 8	(D) 64	


PHYSICS =

(Bengali Version)

- 15 সেমি ব্যাসার্ধবিশিষ্ট একটি বিকার 0.075 নিউটন/মি পৃষ্ঠটান বিশিষ্ট তরল দ্বারা পূর্ণ করা হল। তরলপৃষ্ঠে কোন কল্পিত ব্যাসের দুদিকে মোট পৃষ্ঠটান হবে
 - (A) 0.075 N
- (B) $1.5 \times 10^{-2} \text{ N}$
- (C) .225 N
- (D) 2.25×10^{-2} N
- পরস্পর সংলগ্ন দৃটি স্প্রিং এর সাথে 16 Kg ভর যুক্ত করে একটি দৃঢ় অবলম্বনের সাথে লম্বালম্বিভাবে ঝোলানো আছে। স্প্রিং ধ্রুবক যথাক্রমে K, ও K2 : সমগ্র বস্তুটির উল্লম্ব কম্পনের পর্যায়কাল হবে
 - (A) $\frac{1}{8\pi}\sqrt{K_1 + K_2}$ (B) $8\pi\sqrt{\frac{K_1 + K_2}{K_1 K_2}}$ (C) $\frac{\pi}{2}\sqrt{K_1 K_2}$ (D) $\frac{\pi}{2}\sqrt{\frac{K_1}{K_2}}$

- একটি প্রগামী তরঙ্গের সমীকরণ $Y=15 \sin{(660 \pi t-0.02 \pi x)}$ সেমি হলে তরঙ্গের কম্পাংক
 - (A) 330 হার্টজ
- (B) 342 হার্টজ
- (C) 365 হার্টজ
- (D) 660 হার্টজ
- একটি দুমুখ খোলা নলের বায়তে কম্পাংক f। চোঙ্গটিকে খাড়াভাবে অর্ধেকটা জলে নিমজ্জিত করলে ওর মূল
 - (A) f
- (B) 2f
- (D) $\frac{f}{4}$
- দৃটি টানকরা তারের একটি দৈর্ঘ্য 'l' এবং অপরটির '2l' এবং একটির টান 'T' এবং অপরটির '4T'। যদি তার দুটি একই পদার্থ দিয়ে তৈরী হয় তবে তাদের কম্পাংকের অনুপাত হবে 🥏
 - (A) 2:1
- (B) 1:2
- (C) 1:1
- (D) 1:4
- 200 মি/সেকেন্ড বেগে অণুভূমিক তলে উড়ন্ত বিমানে শব্দ করার 10√5 সেকেন্ড পরে তার প্রতিধ্বনি শোনা যায়। বায়ুতে শব্দের বেগ 300 মি/সেকেন্ড হলে বিমানের উচ্চতা হবে
 - (A) 250 위
- (B) 250 √5 国
- (C) 1250 মি
- (D) 2500 国
- 7. দুইটি সুরশলাকা যাদের কম্পাংক n, এবং n, সেকেন্ডে n সংখ্যক স্বরকম্পের সৃষ্টি করে। যদি n, এবং n এর মান জানা থাকে তবে n, এর মান হবে।
 - (A) $\frac{n_2}{n} + n_2$

- (C) $n_2 \pm n$ (D) $\frac{n_2}{n} n_2$
- 36 কিমি/ঘন্টা বেগে গতিশীল একটি গাড়ী 500 হার্টর্জ কম্পাংকের একটি সাইরেনকে অতিক্রম করে। সাইরেন অতিক্রম করার পর গাড়ীর আরোহীর কাছে সাইরেনের আপাত কম্পাংকের মান
 - (A) 520 হার্টজ
- (B) 485 হার্টজ
- (C) 540 হার্টজ
- (D) 460 হাৰ্টজ
- 9. 6 টি অণুর দ্রুতি যথাক্রমে 2 একক, 5 একক, 3 একক, 6 একক, 3 একক ও 5 একক। তাদের গড় বর্গীয় বেগ হল
 - (A) 4.0 একক
- (B) 1.7 একক
- (C) 4.2 একক
- 10. কোন চিত্রটি জলের উষ্ণতার উপর নির্ভরতা সঠিক ভাবে প্রকাশ করছে?

	11 ₃	 1.2 m লম্বা বন্দুকের নল মোটামুটি কতটা সময় কাটি (A) 4 ms 	ে থেকে বুলে ট বের হল ট্যাছে? (B) 40 ms		(D) 1 s	7 10 10
				সেকেন্ডে 'c' মিটার দরতে :	সরিয়ে দিলে, যেখানে $s = \frac{1}{3} t^2$, ঐ বল	
	12.			Cold Lea 2 Live In Tuesd	-	
		কর্তৃক 2 সেকেন্ডে কৃতকা		5	3	
		(A) $\frac{8}{3}$ J	(B) $\frac{19}{5}$ J	(C) $\frac{5}{19}$ J	(D) $\frac{3}{8}$ J	
	13.	হাইড্রোজেন পরমাণুর আয় ফোটন শোষণ করল। উর্	च्च विक्रव 13.6 eV ।	এই পরমাণুর নিম্নতম অবহ চে সংক্রমিত হতে গেলে ব	গ্রায় একটি ইলেকট্রন 12.75 eV র একটি তত বিভিন্ন প্রকারের রেখা বর্ণালি পাওয়া	
		সম্ভব ? (A) 1	(B) 4	(C) 2	(D) 6	
		জলের উষ্ণতা বৃদ্ধিতে জ	লে লেখ্যান এক টকবা ব	ক্রাঠেব আপাত ভার		
	14	(A) বৃদ্ধি পাবে	of Oblight da Xavi	(B) হ্রাস পাবে		
		(A) খাৰা গাণে (C) বন্ধি অথবা হাসপো	ত পারে	(D) একই থাকবে	that I was a win to	
					000 - 10 STATE 1000	
	15.	ওই জলকে সম্পূর্ণরূপে	রের সাহায্যে কিছু পরিম বাষ্পীভূত করতে আর	্যাণ জলকে 0°C থেকে 10। ও 55 মিনিট সময় লাগে।	0°C তাপমাত্রায় তুলতে 10 মিনিট এবং বাষ্পীয় ভবনের লীন তাপ হিসেব করে	
		পাওয়া যায়	æ) ≤40 කාස්ව්/গা	স (C) 550 কালবী/গ্ৰ	াম (D) 560 ক্যালরী/গ্রাম	
		(A) 530 ক্যালয়া/আৰ	(D) 240 4)14131241	(C) 330 (31 IAW-		
	16.	নীচের পদার্থগুলির কোন	টির স্থিতিস্থাপকতা সর্ব্বো			
		(A) ইস্পাত	(B) তামা	(C) রাবার	(D) 30对领	
	. =		নেইখন জানজাল জোল্ড। জ	ারটি হঠাৎ ছিড়ে গেলে তার	া তাপমাত্রা	
	17 _x	বলপ্রয়োগে একাট তার ট (A) অপরিবর্তিত থাকে	ম।	(B) কমবে।		
		(C) বাড়বে।	81		ও তারপর বাড়বে।	
		•				
	18.	ঘরের তাপমাত্রা শিশিরাং	কের সমান হলে আপেগি	ক্ষক আর্দ্রতার মান হবে ১০১ বংগ্র	(D) 85%	
		(A) 100%	(B) Zero%	(C) 70%	(D) 83%	
	10-	কোন তাপমানোয বায়র ড	অণর গড় বর্গীয়বেগের ব	র্গমূলের মান প্রমাণ চাপ ও	তাপমাত্রার বেগের দ্বিগুণ হবে?	
	17,	(A) 519°C	(B) 619°C	(C) 719°C	(D) 819°C	
				2/2 2/2/5	ক্রমান্তর্ভার প্রতিম্বরাংক হল	40.1 ** *
	20.	বায়ুর সাপেক্ষে কাচের ও	 কোয়ার্জের প্রতিসরাংক 	যথাক্রমে 3/2 ও 12/১ ক।	চের সাপেক্ষে কোয়ার্জের প্রতিসরাংক হল 18	-14
		(A) $\frac{8}{5}$	(B) $\frac{5}{8}$	(C) $\frac{3}{18}$	(D) $\frac{18}{5}$	
		3	O			
	21.	একটি অবতল দর্পণের ব	ক্রেতা ব্যাসার্ধ 24 সেমি	এবং প্রতিবিস্বের আকার বস্তু	র আকারের 1.5 গুণ। তাহলে বস্তু দূরত্ব	
l		হল			का अ व्यक्ति	
		(A) 20 সেমি	(B) 8 সেমি	(C) 16 সেমি	(D) 24 সেমি	
	22	্ত্ৰটি কালোক বিৰু টেও	স <i>1/</i> 2 প্রতিসবাল্ল বিশিষ্ট	ই জ <i>লে</i> র 'h' গভীরতায় <mark>অর্</mark> ব	স্থিত। জলের উপরতলের যে বৃত্তের	
ľ	22	ভেতর থেকে আলো নি	র্গত হবে তার ব্যাসার্ধ,			
ľ		_	$\sqrt{7}$	$\sqrt{3}$.	7	
ŀ		(A) $\frac{3}{\sqrt{7}}$ h	(B) $\frac{47}{3}$ h	(C) $\frac{1}{7}$ h	(D) $\frac{7}{\sqrt{3}}$ h	
l		* /				
l	23	'+q' আধানযুক্ত চারটি নি	বিন্দু একটি 2d ব্যাসের বৃ	ত্তের পরিধির উপর এমনভা	বে রাখা আছে যে বিন্দুগুলি একটি বর্গক্ষেত্র	
Į.		গঠন করে। বৃত্তের কেন	ন্দ্র বিভবের মান		THE RESERVE OF THE PARTY OF THE	
		(A) 0	(B) 4q	(C) $\frac{4d}{\pi}$	(D) $\frac{q}{4d}$	
m		(14)	, d	q	UT UT	

J	24.	*****	4 461						বড় গোলকটির আধান ও	work
		(A)	64q, C		(B)	16q, 4C	(C) 64q,	4C (D) 16c	ı, 64C	
	25.	(B) (C)	শক্তির নিত ভরবেগের	হাতা সূত্র নিত্যতা হ	ত্র					
				ンガビンドンド	، اهره					
2	26.	(A) (B) (C)	নিউক্লীয়া স	एटवाकरन एटवाकरन	গটেশর ।৭ বটি মারো	রাম ভর বি রাম ভর বি	উক্লিয়নগুলির বিরাম। জিল ভিত্তিক	ভরওলির সমষ্টির থেকে বিরাম ভরগুলির সমষ্টির	কম। থেকে বেশী। কি নিৰ্ভত হয়।	
2	7.	একটি বড় হা (A) (B) f (C)	সিলিকন ও । দৃটি ভাব ভাবেনিয়ারে সিলিকনে বি বটি ভারোত	একটি জা রাভেই সম ম বিপরীত পেরীত ভা ভ বিপরীত	মেনিয়াম নি পশ্চা তড়িং : উৎপ্রবাচ	ভারোডের ৎমুখী বারা প্রবাহের মা হর মাত্রা ভ	। ভৌত মাত্রাগুলি সমা স দেয়া হয়েছে। ব্রা সিলিকন অপেক্ষা বে মর্মেনিয়াম অপেক্ষা বে	ন। সি <i>লিকনে</i> নিষিদ্ধ অধ বশী। শী	ঙল জার্মেনিয়াম অপেক্ষা ক নির্ণয় করা সম্ভব নয়।	
28	. 4	4Ω রে	াধ বিশিষ্ট এ	একটি ভাব্য	क शैकिए	য় একটি ব		दमन्या पानल छन्ना (स्ट्र	ক।নণয় করা সম্ভব নয়।	
	((A) 4	Ω	(B) 20) 'त्र तकाक र्	েওর আকার দেওয়া হ (C) 1Ω	ল। যে কোন ব্যাসের দুর্ (D) 8Ω	ই প্রান্তে রোধ হবে	
29	. E	E তড়িৎ স্ভোন্তরে	থ্যালক বল বর শর্ত হল	ও 'r' অভ	্যন্তরীণ (রাধ বিশিষ্ট	একটি ব্যাটারীকে 'R'	রোধের সাথে যুক্ত করা	হল। স্বাধিক ক্ষমতা	
	(,	А) г	< R	(1	3) r >	R	(C) $r = \frac{1}{R}$	(D) r = R		
	(1	•, •,		(E	1) 31		(C) 23	(D) 22		
31.	A	= 41	+31+1	2 € Ce 🕏	ाि x-व	কের সাথে	যে কোণে নত থাকে	তার মান হল		
	160	17: 31	113,) (B) Sin	(13)				
	(C	() Co	$os^{-1}\left(\frac{4}{13}\right)$) o) Cos	$-1\left(\frac{3}{13}\right)$				
32.	't'	সময়ে	কোন কণার	ৰ গতিবেগ	'v' <i>(</i>	v = at ⊥ h	u ² Nillago stat oraș	শি করা যায়। এই সমীব		
	(A) L		(B)	LT-	· — ас — с	দ শ্ৰাক্ষণ স্থায়। প্ৰক (C) LT ⁻²	শি করা যায়। এই সমীব (D) LT ⁻³	দরণে b এর মাত্রা হল	
33.	এক কর	চটি সর 11 যায়,	লরেখা বরা বস্তুর প্রাথ	বির গতিশী মক গতিবে	লি কোন গ হল	বস্তু কর্তৃক	ত্র অতিক্রান্ত দুরত্ব। সম	$\boxed{CS} \ S = 3 - 4t + 5t^2,$	সমীকরণ দ্বারা প্রকাশ	
	(A)) 3 এ	কক		_3 ⊴		(C) 4 একক			
34.	1 গ্ৰ হলে	াম ভৱে ব উহাব	রর একটি : য অপকেন্দ্র	বস্তুপিগু] . বল হতে	0 রেডি	য়ান/সেকেং	ভ কৌণিক বেগে 1 মি	টার ব্যাসার্ধের বৃত্তের প	রিধি বরাবর গতিশীল	
	(A)	0.1	ডাইন	(B)	1 ডাই	न	(C) 10 ডাইন	(D) 100 ডাই	a	
35	1.5 থেকে	গ্রাম এ ক x দুং	বং 2.5 গ্রা বত্বে অবস্থি	ম ভরযুক্ত ত হলে 🕶	দুইটি কু এর মান	দ্র বস্তুর পা	রস্পরিক দুরত্ব 16 সে	মি এবং ওদের ভরকেন্দ্র	1.5 গ্রাম বিশিষ্ট বস্তু	
	(A)	10 दे	সমি		- ব বান 6 সেমি		(C) 13 সেমি	(D) 3 সেমি	7.	

36.	পৃথিবীর ভর অপরিবর্তি দিনের জন্য সময় লাগবে	ত রেখে এমনভাবে সঙ্কুচিৎ	ত হল যে ওর ব্যাসার্ধ ।	/4 অংশ হয়ে গেল। তবে একটি গ	পুরে র
	(A) 96 ঘন্টা	(B) 48 ঘন্টা	(C) 6 ঘন্টা	(D) 1.5 ঘন্টা	
37.		ত হল। যদি প্রথম খন্ড স্থির			केथा
38.	তা হল (µ = 0.1 এবং g			র সমান্তরাল যে বল প্রয়োগ করতে (D) 4.9 নিউটন	হবে
39.	কিমি/সেকেন্ড হয় তবে ৰ	টি রকেট সেকেন্ডে 0.1 রকেটের উৎক্ষেপণ ত্বরণ হ (B) 100 মি/সে ²	বে।	র। যদি বহির্গত গ্যাসের গতিবে [,] (D) 1 মি/সে ²	त 1
40.	ভূপৃষ্ঠে একটি বস্তুর ওজ ওজন হবে	ন 12.6 নিউটন। যদি বস্তুটি	কৈ পৃথিবীর ব্যাসার্ধের অ	ার্ধেক উচ্চতায় ওঠানো হয় তবে বং	ষ্টটির
	(A) 2.8 নিউটন	(B) 5.6 নিউটন	(C) 12.6 নিউটন	(D) 25.2 নিউটন	
		CHE	MISTRY		
		(Bengal	li Version)		
41	2N HCl এর সমান আণ	ব গাঢ়ত্ব হবে			
7,0	(A) 4.0 N H ₂ SO ₄	(B) 0.5 N H ₂ SO ₄	(C) 1.0 N H ₂ SO ₄	(D) 2.0 N H ₂ SO ₄	1000
42.		ার সাথে নাইট্রাস অ্যাসিডের	বিক্রিয়ায় N.T.P. তে দে	य n source	
	(A) 1.0 লিটার নাইট্রো(C) 11.2 লিটার নাইট্রে	জেন গ্রন্থেন	(B) 22.4 লিটার নাই (D) 5.6 লিটার নাই	ইট্রোজেন টোজেন	
43	0.1 M অ্যাসেটিক অ্যাস (A) pH বৃদ্ধি পায়	ডে সোডিয়াম অ্যাসিটেট্ বে	গাগ করলে (B) pH হ্রাস পায়		
	(C) pH অপরিবর্তিত থ	গাকে	(D) pH এর পরিবর্ত	ন অনুমান করা যায় না।	
4.4	हरलकान्य 1s2 2s2	² 2p ⁶ 3s ² 3p ⁶ 3d ⁹ সৃচিত	ক্রে একটি		
44.	(A) ধাতব প্রমাণু	(B) অধাতব পরমাণু	(C) অধাতব অ্যানায়	ন 🗥 প্রাত্তর জ্যানিয়ন	
15	THE PERSON NAMED IN COLUMN TWO	THE PERSON AND DE			
45.	জলের অস্বাভাবিক উচ্চ (A) অন্তরাণবিক হাইড্রে		בפר בפוומיה		
	(C) আন্তরাণবিক হাইয়ে	নাক্তেন বন্ধন			
	(D) উচ্চ আপেক্ষিক ত	গপ			
4.5	24 OD GG	হার + " <u>d(B)"</u> এর সমান হব			
46		$\frac{d}{dt} = \frac{2}{d(A)}$	1/42	$(D) = \frac{3}{2} \frac{d(A)}{d(A)}$	
	(A) $\frac{1}{2}$ $d(A)$				

(B) s > p > d > f (C) f > p > s > d (D) p < d < s < f

47. কোনো প্রদন্ত কক্ষের জন্য আবরণী ক্ষমতার ক্রম হল

(A) f > d > p > s

The second second

48	 কোনও রাসায়নিক বিক্রিয়াতে 'অনুঘটক' বলিতে বুঝ (A) যাহা বিক্রিয়ার সাম্যজনিত প্রবক্তে বর্ধিত করে (B) যাহা উৎপন্ন পদার্থের সাম্যাবস্থায় গাঢ়ত্ব বর্ধিত (C) বিক্রিয়ার পথ পরিবর্তন করে না। (D) বিক্রিয়ার সক্রিয়নশক্তির (activation energy) 	। করে।
49	9. নীচের সমীকরণগুলির মধ্যে কোনটি সঠিক de Brog	elie সম্পর্ক নির্দেশ করে?
	(A) $p = \frac{h}{mv}$ (B) $\lambda = \frac{h}{mv}$	(C) $\lambda = \frac{h}{mp}$ (D) $\lambda m = \frac{v}{p}$
50)	
	(A) 2 (B) 1	(C) 2.5 (D) 1.5
51,		ত্বের (d) সংগে যেভাবে পরিবর্তিত হয় তা হল
	(A) $\frac{1}{\sqrt{d}}$ (B) d	(C) \sqrt{d} (D) d^2
52.	সাধারণ উষ্ণতায় ম্যাগনেসিয়াম হাইড্রকসাইডের দ্রাব্য জলীয় দ্রবণের pH হবে	তা গুণফল 1.96×10 ^{–11} ; ম্যাগনেসিয়াম হাইড্রক্সাইডের সম্পৃক্ত
	(A) 10.53 (B) 8.47	(C) 6.94 (D) 3.47
53:	 যে পাত্রে 2NO(g) + O₂(g) = 2NO₂(g) বিক্রিয়াটি এক তৃতীয়াংশ করলে বিক্রিয়াটির গতি বৃদ্ধি পাবে (A) 3 গুণ (B) 9 গুণ 	
54.	(-)	(C) 27 영역 (D) 36 영역
24	(A) H(d) + I(d) — > সমা (-) ব্যক্তিয়াটিকৈ ব্যক্তিয়াই হ	পরিবর্তন ধনাত্মক হবে, কোন গণনা না করে সেটি সুচিত কর।
	(A) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ (B) $HCI(g) + NH_3(g) \rightleftharpoons NH_4CI(s)$	
	(C) $NH_4NO_3(s) = N_2O(g) + 2H_2O(g)$	
	(D) MgO(s) + H ₂ (g) = Mg(s) + H ₂ O(l) (s = কঠিন, l = তরল, g = গ্যাস)	
55.	141	ক্রিয়ার জাতক P হল, (C) ¹⁴¹ Ba (D) ¹⁴¹ Cs
56.	0.01 মোলাল NaCl দ্রবণে জলের হিমান্ক নামে 0.37°	C; 0.02 মোলাল ইউরিয়া দ্রবণের হিমাঙ্ক কমবে
	(A) 0.37°C (B) 0.74°C	(C) 0.185°C (D) 0°C
57.	নিম্নলিখিতগুলির মধ্যে কোনটি ওজোনোলিসিস প্রক্রিয়া: (A) $Me_2C = CHMe$ (C) $MeCH_2 - C(Me) = CMe_2$	য় অ্যালডিহাইড এবং কিটোন উভয়ই দেবে। (B) Me ₂ C = CMe ₂ (D) MeCH(Me) — CH = CHMe
58.	ক্ষারীয় মাধ্যমে ফেনলের বেঞ্জয়লেশনকে বলা হয়	The second second
	(A) Friedel Craft বিক্রিয়া (C) Schotten-Baumann বিক্রিয়া	(B) Wurtz-Fittig বিক্রিয়া (D) Sabatier-Sandern's বিক্রিয়া
59.	নীচের যৌগগুলির মধ্যে কোনটি পরাকর্ষী সঙ্কলন বিক্রিয় CH ₃ CHO, PhCOCH ₃ , (A) (B)	মায় সবচেয়ে বেশী সক্রিয় ? PhCOPh, CH3COCH3 (C) (D)
60.	গাঢ় H_2SO_4 সহ অ্যাসিটোন পাতিত করলে দেয় (A) diacetone alcohol (B) mesityl oxide	(C) mesitylene (D) Propene-2-ol

R CH2 CH2 OH কে RCH2 CH2 COOH-এ নিম্নলিখিত ধাপের ক্রমে পরিবর্তন করা যায় ঃ

(A) PBr₃, KCN, H₃O⁺

(B) PBr₃, KCN, H₂/Pt

(C) KCN, H₃O+

(D) HCN, PBr3, H3O+

নীচের বিক্রিয়াজাত মুখ্য পদার্থ 'P' হল

$$CH_3CH = CH_2 \xrightarrow{HI} P$$

(A) CH₃ CH₂ CH₂ I

(B) CH₃ CH—CH₃

(C) CH_2 — $CH = CH_2$

(D) CH₂—CH₂—CH₂

কিটোন থেকে সায়ানোহাইড্রিন তৈরী হওয়াটি একটি উদাহরণ -

- (A) ইলেকট্রন আসক্ত সঙ্কলনের
- (B) পরাকর্ষী প্রতিস্থাপনের

(C) পরাকর্ষী সম্বলনের

(D) ইলেকট্রন আসক্ত প্রতিস্থাপনের

নীচের কোনটি সিস্-ট্রান্স সমাবয়তা দেখায়?

- (A) CH_2Br — CH_2Br (B) CBr_3 — CH_3
- (C) CHBr = CHBr (D) $CBr_2 = CH_2$

65. C4H11N সংকেত বিশিষ্ট কতগুলি প্রাইমারী অ্যামিন হতে পারে?

- (A) 1
- (B) 2
- (C) 3
- (D) 4

CH3-CH = CH-C = CH সংকেত যুক্ত যৌগটির IUPAC অনুসারে নাম হবে

(A) পেন্ট-3-ইন-1-আইন

(B) পেন্ট-3-ইন-4-আইন

(C) পেন্ট-2-ইন-4-আইন

(D) পেন্ট-2-ইন-3-আইন

একটি ট্রাইপেপ্টাইডকে লেখা হল এইভাবে Glycine-Alanine-Glycine। এই ট্রাইপেপটাইডের সঠিক গঠন হল ঃ

- CH,
- COOH 0
- COOH Ö CH.
- CH, CH.

নীচের কোন্টি LiAIH4 দ্বারা বিজারিত করলে একটি মাত্র বিক্রিয়াজাত পদার্থ উৎপন্ন হবে?

- (A) CH₃ OCOCH₂ CH₃
- (B) CH₃CH₂O COCH₂ CH₃

(C) CH₃CH₂OCOCH₃

(D) CH₃ CH₂O COCH₂ CH₂CH₃

নীচের যৌগজোড়গুলির মধ্যে কোন জোড়টি জলীয় NaHCO3-এর দ্রবণের সাথে বু ঘুদন সৃষ্টি করবে?

- CH₃COCl,
- CH₁COCH₃, II
- CH₃COOCH₃, CH₃COOCOCH₃ III

- 1 (A) I এবং II
- (B) । এবং IV
- (C) !! এবং !!!
- (D) I এবং III

,A.,

	THE GOVERN			1	Rough W
70.		সর্বনিম্ন ং		A2000	_
	(A) CH ₃ CHF. CO ₂ H	(B) FCH ₂ CH ₂ CO	O ₂ H		
	(C) BrCH ₂ CH ₂ CO ₂ H	(D) CH ₃ CHB _r .C			11 5
71.	অ্যামোনিয়াম ভাইক্রোমেটকে উত্তপ্ত করলে নিচের	কোন জোড়াটি পাওয়া যায়	?		
	(A) N ₂ এবং H ₂ O (B) N ₂ O এবং H ₂ O)		min.	
	(C) NO ₂ এবং H ₂ O (D) NO এবং NO ₂	!			
		364-361			
72.		ত হয় ?			
	(A) কার্বন দ্বারা CaO-এর বিজারণ				
	(B) হাইড্রোজেন দ্বারা CaO-এর বিজারণ				
	(C) অনার্দ্র CaCl ₂ এবং KCl-এর মিশ্রণের তড়ি	হৎ বিশ্লেষণ			
	(D) গলিত Ca(OH) ₂ এর তড়িৎ বিশ্লেষণ				
73.	অ্যাজুরাইট আকরিকের সংযুতি হল				
	(A) CuCO ₃ .CuO	(B) Cu(HCO ₃) ₂ .0	Cu(OH) ₂		
	(C) 2CuCO ₃ .Cu(OH) ₂	(D) CuCO ₃ . 2Cu	(OH) ₂		
74.	অন্নিকৃত সোডিয়াম নাইট্রাইট দ্রবণে KI যোগ কর	লৈ			
	(A) NO গ্যাস উদ্ভূত হয় এবং I ₂ মুক্ত হয়				
	(B) N ₂ গ্যাস উদ্ভূত হয় এবং HI উৎপন্ন হয়				
	(C) N ₂ O গ্যাস উদ্ভূত হয় এবং I ₂ মুক্ত হয়				
	(D) N ₂ গ্যাস উদ্ভূত হয় এবং HOI উৎপন্ন হয়				
75.	Al(OH)3 থেকে Fe(OH)3 কে পৃথক করতে য	াহা যোগ করতে হবে			
	(C) NaOH দ্রবণ (D) NH ₄ Cl এবং N	NH₄OH এর মিশ্রণ			
76.	নীচের বিবৃতিগুলি থেকে অশুদ্ধটি পছন্দ কর ।				
	(A) বায়ু পরিশোধনে ওজোন বীজাণু দূরীকরণের	জন্য ব্যবহৃত হয়।			
	(B) ওজোনে অক্সিজেন – অক্সিজেন বন্ধনীদূরত্ব,	আণবিক অক্সিজেনের মধ্যেব	চার বন্ধনীদুরত্বের সঙ্গে স	र्गान ।	
	(C) ওজোন অণুটি গঠনে কৌণিক।				
	(D) ওজোন একটি জারক দ্রব্য।				
77.	নাইট্রেট মূলক সনাক্তকরণে বাদামী জটিল যৌগটি	লেখা যায় [Fe(H ₂ O) ₅ NO)]SO ₄ হিসাবে। এই জটিল	যৌগে Fe-	
	এর জারণ সংখ্যা কত ?				
	(A) +1 (B) +2	(C) +3	(D) 0		
78.			মানিয়া উৎপন্ন হয়। এক (মাল ইলেকট্রন	
	(A) 7.750 의 . (B) 10.625 의 .	(C) 8.000 গ্ৰা.	(D) 9.875 1 .		
79.	0.01 মোল PbS কে PbSO ₄ এ রূপান্তরিত করে হবে	ত প্রয়োজনীয় "10-আয়তন'	' হাইড্রোজেন পারঅক্সাই।		
	(A) 11.2 মি.লি. (B) 22.4 মি.লি.				
80.	একটি অজ্ঞাত মৌল একটি অক্সাইড গড়ে। ঐ মৌর পরিমাণ অক্সিজেন থাকে?	লের তৃল্যাক্ষভার কি হবে যদি	ট উপরোক্ত যৌগের মধ্যে	20%	
	(A) 16 (B) 32	(C) 8	(D) 64		